Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Life Sci ; 346: 122632, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615748

RESUMO

Mycobacterium Tuberculosis (Mtb) causing Tuberculosis (TB) is a widespread disease infecting millions of people worldwide. Additionally, emergence of drug resistant tuberculosis is a major challenge and concern in high TB burden countries. Most of the drug resistance in mycobacteria is attributed to developing acquired resistance due to spontaneous mutations or intrinsic resistance mechanisms. In this review, we emphasize on the role of bacterial cell cycle synchronization as one of the intrinsic mechanisms used by the bacteria to cope with stress response and perhaps involved in evolution of its drug resistance. The importance of cell cycle synchronization and its function in drug resistance in cancer cells, malarial and viral pathogens is well understood, but its role in bacterial pathogens has yet to be established. From the extensive literature survey, we could collect information regarding how mycobacteria use synchronization to overcome the stress response. Additionally, it has been observed that most of the microbial pathogens including mycobacteria are responsive to drugs predominantly in their logarithmic phase, while they show resistance to antibiotics when they are in the lag or stationary phase. Therefore, we speculate that Mtb might use this novel strategy wherein they regulate their cell cycle upon antibiotic pressure such that they either enter in their low metabolic phase i.e., either the lag or stationary phase to overcome the antibiotic pressure and function as persister cells. Thus, we propose that manipulating the mycobacterial drug resistance could be possible by fine-tuning its cell cycle.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Humanos , Antituberculosos/farmacologia , Ciclo Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico
2.
J Clin Microbiol ; 61(10): e0062823, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37724858

RESUMO

Macrolides, such as clarithromycin, are crucial in the treatment of nontuberculous mycobacteria (NTM). NTM are notoriously innately drug resistant, which has made the dependence on macrolides for their treatment even more important. Not surprisingly, resistance to macrolides has been documented in some NTM, including Mycobacterium avium and Mycobacterium abscessus, which are the two NTM species most often identified in clinical isolates. Resistance is mediated by point mutations in the 23S ribosomal RNA or by methylation of the rRNA by a methylase (encoded by an erm gene). Chromosomally encoded erm genes have been identified in many of the macrolide-resistant isolates, but not in Mycobacterium chelonae. Now, Brown-Elliott et al. (J Clin Microbiol 61:e00428-23, 2023, https://doi.org/10.1128/JCM.00428-23) describe the identification of a new erm variant, erm(55), which was found either on the chromosome or on a plasmid in highly macrolide-resistant clinical isolates of M. chelonae. The chromosomal erm(55) gene appears to be associated with mobile elements; one gene is within a putative transposon and the second is in a large (37 kb) insertion/deletion. The plasmid carrying erm(55) also encodes type IV and type VII secretion systems, which are often linked on large mycobacterial plasmids and are hypothesized to mediate plasmid transfer. While the conjugative transfer of the erm(55)-containing plasmid between NTM has yet to be demonstrated, the inferences are clear, as evidenced by the dissemination of plasmid-mediated drug resistance in other medically important bacteria. Here, we discuss the findings of Brown-Elliott et al., and the potential ramifications on treatment of NTM infections.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium chelonae , Mycobacterium , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mycobacterium chelonae/efeitos dos fármacos , Mycobacterium chelonae/genética , Macrolídeos/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Claritromicina/uso terapêutico , Mycobacterium/genética , Mycobacterium/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/isolamento & purificação , Cromossomos/efeitos dos fármacos
3.
Molecules ; 27(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011554

RESUMO

Rose bengal has been used in the diagnosis of ophthalmic disorders and liver function, and has been studied for the treatment of solid tumor cancers. To date, the antibacterial activity of rose bengal has been sporadically reported; however, these data have been generated with a commercial grade of rose bengal, which contains major uncontrolled impurities generated by the manufacturing process (80-95% dye content). A high-purity form of rose bengal formulation (HP-RBf, >99.5% dye content) kills a battery of Gram-positive bacteria, including drug-resistant strains at low concentrations (0.01-3.13 µg/mL) under fluorescent, LED, and natural light in a few minutes. Significantly, HP-RBf effectively eradicates Gram-positive bacterial biofilms. The frequency that Gram-positive bacteria spontaneously developed resistance to HP-RB is extremely low (less than 1 × 10-13). Toxicity data obtained through our research programs indicate that HP-RB is feasible as an anti-infective drug for the treatment of skin and soft tissue infections (SSTIs) involving multidrug-resistant (MDR) microbial invasion of the skin, and for eradicating biofilms. This article summarizes the antibacterial activity of pharmaceutical-grade rose bengal, HP-RB, against Gram-positive bacteria, its cytotoxicity against skin cells under illumination conditions, and mechanistic insights into rose bengal's bactericidal activity under dark conditions.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Rosa Bengala/química , Rosa Bengala/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Humanos , Cinética , Testes de Sensibilidade Microbiana , Mycobacterium/efeitos dos fármacos , Rosa Bengala/síntese química , Rosa Bengala/uso terapêutico
4.
J Nat Prod ; 85(1): 83-90, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34931849

RESUMO

Single-strain cultivation of a mountain soil-derived Streptomyces sp. GA02 and its coculture with Pandoraea sp. GA02N produced two aromatic products, gwanakosides A and B (1 and 2, respectively). Their spectroscopic analysis revealed that 1 is a new dichlorinated naphthalene glycoside and 2 is a pentacyclic aromatic glycoside. The assignment of the two chlorine atoms in 1 was confirmed by the analysis of its band-selective CLIP-HSQMBC spectrum. The sugars in the gwanakosides were identified as 6-deoxy-α-l-talopyranose based on 1H-1H coupling constants, Rotating frame Overhauser enhancement spectroscopy (ROESY) NMR correlations, and chemical derivatization followed by spectroscopic and chromatographic analyses. The absolute configuration of 2, whose production was enhanced approximately 100-fold in coculture, was proposed based on a quantum mechanics-based chemical shift analysis method, DP4 calculations, and the chemically determined configuration of 6-deoxy-α-l-talopyranose. Gwanakoside A displayed inhibitory activity against pathogenic bacteria, including Staphylococcus aureus (MIC = 8 µg/mL) and Mycobacterium tuberculosis (MIC50 = 15 µg/mL), and antiproliferative activity against several human cancer cell lines (IC50 = 5.6-19.4 µM).


Assuntos
Burkholderiaceae , Streptomyces , Humanos , Burkholderiaceae/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaios de Seleção de Medicamentos Antitumorais , Testes de Sensibilidade Microbiana , Mycobacterium/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Teoria Quântica , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus/efeitos dos fármacos , Streptomyces/metabolismo
5.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361097

RESUMO

Although the therapeutic effect of mycobacteria as antitumor agents has been known for decades, recent epidemiological and experimental studies have revealed that mycobacterium-related chronic inflammation may be a possible mechanism of cancer pathogenesis. Mycobacterium tuberculosis and non-tuberculous Mycobacterium avium complex infections have been implicated as potentially contributing to the etiology of lung cancer, whereas Mycobacterium ulcerans has been correlated with skin carcinogenesis. The risk of tumor development with chronic mycobacterial infections is thought to be a result of many host effector mechanisms acting at different stages of oncogenesis. In this paper, we focus on the nature of the relationship between mycobacteria and cancer, describing the clinical significance of mycobacteria-based cancer therapy as well as epidemiological evidence on the contribution of chronic mycobacterial infections to the increased lung cancer risk.


Assuntos
Vacinas Bacterianas/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/microbiologia , Infecções por Mycobacterium/microbiologia , Mycobacterium/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Mycobacterium/efeitos dos fármacos , Infecções por Mycobacterium/tratamento farmacológico
6.
Medicine (Baltimore) ; 100(31): e26744, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34397815

RESUMO

ABSTRACT: Cured leprosy patients have special physical conditions, which could pose challenges for safety and immunogenicity after immunization. We performed an observational clinical study aimed to identify the safety and immunogenicity of influenza vaccine in cured leprosy patients. A total of 65 participants from a leprosarium were recruited into leprosy cured group or control group, and received a 0.5 ml dose of the inactivated split-virion trivalent influenza vaccine and a follow-up 28 days proactive observation of any adverse events. Hemagglutination and hemagglutination inhibition test was performed to evaluate serum antibody titer, flow cytometry was conducted to screen of cytokines level. The total rate of reactogenicity was 0.0% [0/41] in leprosy cured group and 37.5% [9/24] in control group. The seroconversion rate for H1N1 was difference between leprosy cured group and control group (41.83% vs 79.17%, P = .0082), but not for H3N2 (34.25% vs 50.00%, P = .4468). At day 0, leprosy cured group have relatively high concentration of interleukin-6, interleukin-10, tumor necrosis factor, interferon-γ, and interleukin-17 compared to control group. The interleukin-2 concentration increased 2 weeks after vaccination compared to pre-vaccination in leprosy cured group, but declined in control group (0.92 pg/ml vs -0.02 pg/ml, P = .0147). Leprosy cured group showed a more rapid down-regulation of interleukin-6 when influenza virus was challenged compared to control group (-144.38 pg/ml vs -11.52 pg/ml, P < .0001). Subgroup analysis revealed that the immunization administration declined interleukin-17 concentration in Tuberculoid type subgroup, but not in Lepromatous type subgroup or control group. Clinically cured leprosy patients are relatively safe for influenza vaccine. Leprosy cured patient have immune deficit in producing antibody. Interleukin-6 and interleukin-17 were 2 sensitive indicators in immune response for leprosy affected patients. The identification of indicators might be help management of leprosy and used as predictive markers in leprosy early symptom monitoring.


Assuntos
Imunidade/efeitos dos fármacos , Imunogenicidade da Vacina , Vacinas contra Influenza/normas , Hanseníase/tratamento farmacológico , Formação de Anticorpos/efeitos dos fármacos , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/uso terapêutico , Hanseníase/imunologia , Mycobacterium/efeitos dos fármacos , Mycobacterium/patogenicidade , Mycobacterium leprae/efeitos dos fármacos , Mycobacterium leprae/patogenicidade
7.
Cells ; 10(4)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921194

RESUMO

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1ß, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


Assuntos
Decitabina/farmacologia , Imunidade , Macrófagos/imunologia , Monócitos/imunologia , Biomarcadores/metabolismo , Metilação de DNA/efeitos dos fármacos , Granuloma/patologia , Humanos , Imunidade/efeitos dos fármacos , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Mycobacterium/efeitos dos fármacos , Fenótipo
8.
Sci Rep ; 11(1): 1823, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469079

RESUMO

We present design and antibacterial studies of stereochemically diversified antimicrobial peptides against multidrug-resistant bacterial pathogens. Syndiotactic polypeptides are polymers of alternating L and D amino acids with LDLD or DLDL backbone stereochemical sequence, which can form stable gramicidin like helical conformations. We designed, synthesized and characterized eight model molecular systems with varied electrostatic fingerprints, modulated through calibrated sequence positioning. Six out of eight model systems showed very impressive antimicrobial activity against three difficult to treat bacterial species, Gentamicin resistant MRSA, E. coli and Mycobacterium. More importantly, the designed LDLD peptides were equally potent in serum, an important drawback of poly L peptide sequences due to enzyme mediated degradation and ion sensitivity. Further, we tested the activity of the designed peptides against drug-resistant clinical isolates of Staphylococcus aureus and Escherichia coli. Molecular dynamics simulation studies suggest formation of an assembly of individual peptides, preceding the membrane interaction and deformation. The activity estimates are comparable with the available peptide based antimicrobials, and are also highly specific and less toxic as per standard estimates. Incorporation of D amino-acids can significantly expand the peptide design space, which can in turn manifest in future biomaterial designs, especially antimicrobials.


Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Mycobacterium/efeitos dos fármacos , Peptídeos/química , Staphylococcus aureus/efeitos dos fármacos
9.
Biochim Biophys Acta Gen Subj ; 1865(2): 129806, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253803

RESUMO

BACKGROUND: Host-directed therapy is considered a novel anti-tuberculosis strategy in tackling the tuberculosis burden through autophagy induction by various inducers to curtail the growth of intracellular Mycobacterium tuberculosis. METHODS: In this study, we investigated the anti-tubercular role of soybean lectin, a lectin isolated from Glycine max (Soybean). Effect of SBL on intracellular mycobacterial viability through autophagy and the mechanism involved in differentiated THP-1 cells was studied using different experimental approaches. RESULTS: We initially performed a time kinetic experiment with the non-cytotoxic dose of SBL (20 µg/ml) and observed autophagy induction after 24 h of treatment. Abrogation of autophagy in the presence of 3-MA and an increase in LC3 puncta formation upon Baf-A1 addition elucidated the specific effect on autophagy and autophagic flux. SBL treatment also led to autophagy induction in mycobacteria infected macrophages that restricted the intracellular mycobacterial growth, thus emphasizing the host defensive role of SBL induced autophagy. Mechanistic studies revealed an increase in P2RX7 expression, NF-κB activation and reactive oxygen species generation upon SBL treatment. Inhibition of P2RX7 expression suppressed NF-κB dependent ROS level in SBL treated cells. Moreover, SBL induced autophagy was abrogated in the presence of either different inhibitors or P2RX7 siRNA, leading to the reduced killing of intracellular mycobacteria. CONCLUSION: Taken together, these results conclude that SBL induced autophagy exerts an anti-mycobacterial effect in P2RX7-NF-κB dependent manner through the generation of ROS. GENERAL SIGNIFICANCE: This study has provided a novel anti-mycobacterial role of SBL, which may play an important role in devising new therapeutic interventions.


Assuntos
Antibacterianos/farmacologia , Mycobacterium/efeitos dos fármacos , NF-kappa B/metabolismo , Lectinas de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas de Soja/farmacologia , Antibacterianos/isolamento & purificação , Antituberculosos/isolamento & purificação , Antituberculosos/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Humanos , Macrófagos/microbiologia , Modelos Moleculares , Mycobacterium/fisiologia , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Lectinas de Plantas/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Soja/isolamento & purificação , Glycine max/química , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose/microbiologia
10.
Chembiochem ; 22(8): 1424-1429, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33347676

RESUMO

Synthetic channels with high ion selectivity are attractive drug targets for diseases involving ion dysregulation. Achieving selective transport of divalent ions is highly challenging due their high hydration energies. A small tripeptide amphiphilic scaffold installed with a pybox ligand selectively transports CuII ions across membranes. The peptide forms stable dimeric pores in the membrane and transports ions by a Cu2+ /H+ antiport mechanism. The ligand-induced excellent CuII selectivity as well as high membrane permeability of the peptide is exploited to promote cancer cell death. The peptide's ability to restrict mycobacterial growth serves as seeds to evolve antibacterial strategies centred on selectively modulating ion homeostasis in pathogens. This simple peptide can potentially function as a universal, yet versatile, scaffold wherein the ion selectivity can be precisely controlled by modifying the ligand at the C terminus.


Assuntos
Cobre/metabolismo , Canais Iônicos/antagonistas & inibidores , Mycobacterium/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Oligopeptídeos/farmacologia , Morte Celular/efeitos dos fármacos , Cobre/química , Humanos , Canais Iônicos/metabolismo , Ligantes , Estrutura Molecular , Mycobacterium/crescimento & desenvolvimento , Neoplasias/metabolismo , Neoplasias/patologia , Oligopeptídeos/química
11.
Bioorg Chem ; 104: 104209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911190

RESUMO

The antimycobacterial investigation of azepanobetulin and its amide derivative was performed. Both compounds showed increased in vitro antibacterial activity on the H37Rv MTB strain in aerobic and anaerobic conditions. Basing on differences between MIC and IC50 values a predominant bactericidal effect for amide in contrast to azepanobetulin with a bacteriostatic antibacterial mechanism is defined. Both compounds showed a strong antibacterial effect against resistant MTB strains with amide derivative being slightly more active. Amide derivative also showed a higher antibacterial potency against non-tuberculous mycobacterial strains (M. avium, M. abscessus). Molecular docking studies showed that the inhibition of tuberculosinyl adenosine transferase (Rv3378c) could constitute an antimycobacterial mechanism of action for these triterpenic azepane derivatives. The pharmacokinetic profile was evaluated by ADMET studies and azepanobetulin showing the better results was evaluated by in vivo experiments. This compound has demonstrated a statistically significant antimycobacterial activity compared to control, but inferior to isoniazid. Our findings show that pentacyclic triterpene derivatives holding a seven-membered azepane A-ring are the promising template for the development of new agents with high antibacterial potential against M. tuberculosis H37Rv, non-tuberculous mycobacterial and drug- resistant strains.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Antibacterianos/síntese química , Antibacterianos/química , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Células THP-1
12.
J Hosp Infect ; 106(3): 585-593, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32889028

RESUMO

BACKGROUND: Heater-cooler units (HCUs) used during cardiopulmonary bypass may become colonized with non-tuberculous mycobacteria (NTM), including Mycobacterium chimaera. Recently, a worldwide investigation conducted in hospitalized infected patients has detected M. chimaera in several Stockert 3T HCUs manufactured by LivaNova. AIM: Microbiological surveillance on Stockert 3T (LivaNova) and Maquet HCU40 (Getinge) devices as well as an evaluation of the efficacy of their recommended decontamination protocols. METHODS: A total of 308 water samples were collected from 29 HCUs: 264 samples were collected from 17 Stockert 3T HCUs and 44 samples from 12 Maquet HCU40 devices. Samples were tested for total viable counts (TVCs) at both 22 and 36°C, Pseudomonas aeruginosa, coliform bacteria, and NTM. The microbiological surveillance began in June 2017 and ran until October 2019. FINDINGS: A total of 308 HCU water samples were analysed, 65.5% of which yielded NTM. The most frequently colonized device with NTM was the Stockert 3T (88.2%), with a frequency of positive samples of 59.5% (157/264). The Maquet HCU40 devices less frequently yielded NTM (33.3%), with a frequency of positive water samples of 13.6% (6/44). Disinfection procedures were effective in reducing TVCs of bacteria with the exception of NTM species. NTM were detected in both pre-disinfection (50.1%) and post-disinfection (55.7%) samples, and no significant association was found between disinfection and NTM results both in Stockert 3T and Maquet HCU40 devices. CONCLUSION: This study suggests that manufacturers' procedures for disinfection are ineffective and/or inadequate. Until effective disinfection protocols become available, the only way to minimize the risk of NTM contamination is to closely monitor the water quality in the HCU, keep it as clean as possible, and treat it like any other biohazardous material.


Assuntos
Desinfecção/normas , Contaminação de Equipamentos/prevenção & controle , Calefação/instrumentação , Micobactérias não Tuberculosas/efeitos dos fármacos , Microbiologia da Água , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/instrumentação , Desinfetantes/farmacologia , Humanos , Itália , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Infecções por Mycobacterium/prevenção & controle , Micobactérias não Tuberculosas/genética
13.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665276

RESUMO

Inteins, as posttranslational regulatory elements, can tune protein function to environmental changes by conditional protein splicing (CPS). Translated as subdomains interrupting host proteins, inteins splice to scarlessly join flanking sequences (exteins). We used DnaB-intein1 (DnaBi1) from a replicative helicase of Mycobacterium smegmatis to build a kanamycin intein splicing reporter (KISR) that links splicing of DnaBi1 to kanamycin resistance. Using expression in heterologous Escherichia coli, we observed phenotypic classes of various levels of splicing-dependent resistance (SDR) and related these to the insertion position of DnaBi1 within the kanamycin resistance protein (KanR). The KanR-DnaBi1 construct demonstrating the most stringent SDR was used to probe for CPS of DnaB in the native host environment, M. smegmatis We show here that zinc, important during mycobacterial pathogenesis, inhibits DnaB splicing in M. smegmatis Using an in vitro reporter system, we demonstrated that zinc potently and reversibly inhibited DnaBi1 splicing, as well as splicing of a comparable intein from Mycobacterium leprae Finally, in a 1.95 Å crystal structure, we show that zinc inhibits splicing through binding to the very cysteine that initiates the splicing reaction. Together, our results provide compelling support for a model whereby mycobacterial DnaB protein splicing, and thus DNA replication, is responsive to environmental zinc.IMPORTANCE Inteins are present in a large fraction of prokaryotes and localize within conserved proteins, including the mycobacterial replicative helicase DnaB. In addition to their extensive protein engineering applications, inteins have emerged as environmentally responsive posttranslational regulators of the genes that encode them. While several studies have shown compelling evidence of conditional protein splicing (CPS), examination of splicing in the native host of the intein has proven to be challenging. Here, we demonstrated through a number of measures, including the use of a splicing-dependent sensor capable of monitoring intein activity in the native host, that zinc is a potent and reversible inhibitor of mycobacterial DnaB splicing. This work also expands our knowledge of site selection for intein insertion within nonnative proteins, demonstrating that splicing-dependent host protein activation correlates with proximity to the active site. Additionally, we surmise that splicing regulation by zinc has mycobacteriocidal and CPS application potential.


Assuntos
DnaB Helicases/antagonistas & inibidores , Mycobacterium/efeitos dos fármacos , Processamento de Proteína/efeitos dos fármacos , Zinco/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , DnaB Helicases/química , DnaB Helicases/genética , Escherichia coli/genética , Inteínas/genética , Mycobacterium/enzimologia , Mycobacterium/genética , Processamento de Proteína Pós-Traducional
14.
Microb Pathog ; 144: 104203, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304794

RESUMO

Several species of rapidly growing mycobacteria (RGM) have been associated with biofilms in areas such as biomedical devices, water distribution systems, cosmetic surgery, and catheter-related blood infections. Biofilms which exhibit antimicrobial resistance such as those formed by the genus Mycobacterium pose a significant risk to health and are of particular interest to researchers. Licarin A (a neolignan found in numerous plant species e.g. nutmeg) has been reported to show a wide range of biological actions including anti-inflammatory, antioxidant, and antibacterial properties. The aim of this study was to prepare a set of Licarin A derivatives and investigate the impact of specific structural changes on its antimycobacterial ability, and its effect on the biofilm formation of RGM species. Initially, the phenolic sub-unit and alkenyl side chain of Licarin A were modified to create derivatives with a higher partition coefficient; as the activity of a compound against mycobacteria seems to be strongly influenced by its hydrophobicity. Further, polar groups were inserted into the side chain to change the hydrophilic-lipophilic profile of the molecules. Results showed variability in the susceptibility profile of mycobacteria against the Licarin A derivatives under analysis. A number of the derivatives showed significant inhibitory activity of planktonic growth of the three strains of mycobacteria used, with even lower MIC values than those observed with reference drugs and Licarin A itself. Cytotoxicity assays showed they also have low toxicity, confirming that structural modifications to the Licarin A have made improvements to its antimycobacterial properties.


Assuntos
Biofilmes/efeitos dos fármacos , Lignanas/química , Lignanas/farmacologia , Mycobacterium/efeitos dos fármacos , Micobactérias não Tuberculosas/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Claritromicina/farmacologia , Testes de Sensibilidade Microbiana , Myristica/química , Micobactérias não Tuberculosas/fisiologia , Sulfametoxazol/farmacologia
15.
Am J Case Rep ; 21: e921517, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255770

RESUMO

BACKGROUND Nontuberculous mycobacteria (NTM) are environmental pathogens that cause an increasing number of diseases, in particular in immunosuppressed patients. Diagnosing NTM infections may be difficult because clinical presentation is unspecific and resembles other conditions such as tuberculosis, lymphomas, or septicemia. CASE REPORT We report the case of a 62-year-old male with a recent history of autologous bone marrow transplantation for a follicular lymphoma admitted to our department for long-lasting remittent fever and abscess-like splenic nodules. The patient was diagnosed with mixed systemic infection by Mycobacterium abscessus and Mycobacterium celatum localized in spleen, bone marrow and kidneys. CONCLUSIONS In this case a rare disseminated atypical mycobacteriosis was diagnosed and treated. As far as we know this is the first case in the literature of M. abscessus localization either in the spleen or in the bone marrow. Our patient underwent a complex long-term therapy and had a complete resolution of the disease.


Assuntos
Antibacterianos/uso terapêutico , Hospedeiro Imunocomprometido , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium/efeitos dos fármacos , Transplante de Medula Óssea , Humanos , Linfoma Folicular/imunologia , Masculino , Pessoa de Meia-Idade
16.
J Hosp Infect ; 105(2): 252-257, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32112827

RESUMO

BACKGROUND: Heater-cooler units (HCUs) have been implicated in the recent global outbreak of invasive Mycobacterium chimaera infection among patients following cardiothoracic surgery. Because infected patients tend to remain asymptomatic for extended periods, detection of M. chimaera from HCUs in real time is essential to halting the ongoing M. chimaera HCU-associated outbreak. Sample collection protocols to evaluate the presence of M. chimaera offer conflicting recommendations regarding the addition of sodium thiosulfate (NaT) during the collection process. AIM: To study the effect of NaT on M. chimaera recovery and culture contamination. METHODS: Seventy-six paired HCU water samples (with and without NaT) were collected, processed and cultured simultaneously into Lowenstein-Jensen slants, Middlebrook 7H10 agar plates, and mycobacterial growth indicator tubes (MGITs), and incubated at 37°C. A subset of 31 paired samples was additionally cultured on MGITs and incubated at 30°C. FINDINGS: Of 76 samples incubated at 37°C in each of the three media, with and without NaT, M. chimaera was identified in at least one aliquot of 21 samples. CONCLUSION: The presence of NaT did not significantly increase the probability of recovering M. chimaera in a multi-variable conditional logistic model and culture contamination rates were similar between aliquots with and without NaT. In the subset of samples cultured on MGITs at both 30°C and 37°C, the presence of NaT again was not associated with M. chimaera recovery, but was significantly associated with reduced culture contamination.


Assuntos
Contaminação de Equipamentos , Infecções por Mycobacterium/prevenção & controle , Mycobacterium/efeitos dos fármacos , Tiossulfatos/farmacologia , Microbiologia da Água , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Contagem de Colônia Microbiana , Surtos de Doenças/prevenção & controle , Calefação/instrumentação , Humanos , Mycobacterium/isolamento & purificação , Viés de Seleção , Água , Abastecimento de Água
17.
ACS Infect Dis ; 6(4): 725-737, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32092260

RESUMO

The ability to respire and generate adenosine triphosphate (ATP) is essential for the physiology, persistence, and pathogenicity of Mycobacterium tuberculosis, which causes tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycobacteria. Docking studies were carried out to reveal potential binding and to understand the binding interactions with the target, cytochrome bcc. Whole-cell-based and in vitro assays demonstrated the potency of SCR0911 by inhibiting cell growth and ATP synthesis in both the fast- and slow-growing M. smegmatis and M. bovis bacillus Calmette-Guérin, respectively. The variety of biochemical assays and the use of a cytochrome bcc deficient mutant strain validated the cytochrome bcc oxidase as the direct target of the drug. The data demonstrate the broad-spectrum activity of SCR0911 and open the door for structure-activity relationship studies to improve the potency of new mycobacteria specific SCR0911 analogues.


Assuntos
Antimaláricos/farmacologia , Antituberculosos/farmacologia , Reposicionamento de Medicamentos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Simulação de Acoplamento Molecular
18.
Eur J Med Chem ; 186: 111882, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31753514

RESUMO

A series of halogenated (4-methoxyphenyl)-1H-tetrazol-5-amine regioisomers (1a-9a, 1b-9b) were synthesized from their corresponding thiourea analogues (1-9). The synthesis pathway was confirmed by an X-ray crystallographic studies of 1a, 1b and 5a. Title derivatives were tested for their in vitro antitubercular activity against standard, "wild-type" and atypical mycobacteria. The highest therapeutic potential was attributed to isomeric N-(bromophenyl)tetrazoles 8a and 9a. Their growth-inhibitory effect against multidrug-resistant Mycobacterium tuberculosis Spec. 210 was 8-16-fold stronger than that of the first-line tuberculostatics. Other new tetrazole-derived compounds were also more or equally effective towards that pathogen comparing to the established pharmaceuticals. Among non-tuberculous strains, Mycobacterium scrofulaceum was the most susceptible to the presence of the majority of tetrazole derivatives. The synergistic interaction was found between 9a and streptomycin, as well as the additivity of both 8a and 9a in pairs with isoniazid, rifampicin and ethambutol. None of the studied compounds displayed antibacterial or cytotoxic properties against normal and cancer cell lines, which indicated their highly selective antimycobacterial effects.


Assuntos
Aminas/farmacologia , Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Tetrazóis/farmacologia , Aminas/síntese química , Aminas/química , Antituberculosos/síntese química , Antituberculosos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química
19.
Eur J Med Chem ; 182: 111644, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31493745

RESUMO

The emergence of drug resistance in infectious microbial strains can be overcome by development of novel drug molecules against unexploited microbial target. The success of Bedaquiline in recent years, as FoF1 ATP synthase inhibitor against XDR and MDR mycobacterium strains, has resulted in further exploration to identify more potent and safe drug molecules against resistant strains. FoF1 ATP synthase is the main energy production enzyme in almost all eukaryotes and prokaryotes. Development of bacterial ATP synthase inhibitors is a safe approach, without causing harm to mammalian cells due to structural difference between bacterial and mammalian ATP synthase target sites. This review emphasizes on providing the structural insights for FoF1 ATP synthase of different prokaryotes and will help in the design of new potent antimicrobial agents with better efficacy. Further, applications of synthetic and natural active antimicrobial ATP synthase inhibitors, reported by different research groups are summarized. Their SAR and mode of actions are also analysed.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium/efeitos dos fármacos , ATPases Translocadoras de Prótons/antagonistas & inibidores , Animais , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Relação Estrutura-Atividade
20.
Tuberculosis (Edinb) ; 117: 45-51, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31378267

RESUMO

This manuscript reports, at the first time, the photoinactivation evaluation of tetra-cationic and anionic porphyrins as photosensitizers (PS) for the photodynamic inactivation (PDI) of rapidly growing mycobacteria strains. Two different charged porphyrin groups were obtained commercially. PDI experiments in the strains Mycobacterium massiliense e Mycobacterium fortuitum conducted with adequate concentration (without aggregation) of photosensitizer under white light at a fluence rate of 50 mW/cm2 over 90 min showed that the most effective PS caused a 100 times reduction in the concentration of viable mycobacteria. The present results show that porphyrin with positively charge are more efficient PS than anionic porphyrin (negatively charged) against M. massiliense e M. fortuitum. It is also clear that the effectiveness of the molecule as PS for PDI studies with mycobacteria is strongly related with the porphyrin peripheral charge, and consequently their solubility in physiological media. Cationic PSs might be promising anti-mycobacteria PDI agents with potential applications in medical clinical cases and bioremediation.


Assuntos
Mycobacterium/efeitos dos fármacos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Ânions , Cátions , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Luz , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Mycobacterium/fisiologia , Mycobacterium/efeitos da radiação , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/fisiologia , Mycobacterium abscessus/efeitos da radiação , Mycobacterium fortuitum/efeitos dos fármacos , Mycobacterium fortuitum/fisiologia , Mycobacterium fortuitum/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA